Master Sciences de la Matière

Parcours "Matériaux innovants et systèmes énergétiques"

Graduate Programme E-Mat

Syllabus Master 1

SOMMAIRE

INTRODUCTION	4
OPPORTUNITES DE CARRIERES	4
RESPONSABLES DE PROGRAMME AU NIVEAU MASTER 1	4
LIEUX D'ENSEIGNEMENT	5
APPROCHE PAR COMPETENCES	5
PLANIFICATION DES COURS	6
ARCHITECTURE DU PROGRAMME	6
INTEGRER LE MASTER E-MAT	6
Comment candidater ?	6
Bourse	6
UNITÉ D'ENSEIGNEMENT (UE) : PHYSIQUE STATISTIQUE ET MATIERE MOLLE (3 ECTS)	7
Physique statistique	7
Matière molle	7
UE : PHYSIQUE QUANTIQUE ET ATOMIQUE (5 ECTS)	8
Physique quantique	8
Physique atomique	8
UE : SYNTHESE CHIMIQUE (3 ECTS)	9
Chimie de coordination et transitions électroniques	9
Condensation inorganique en solution aqueuse	9
Introduction à la chimie moléculaire inorganique	10
UE : PROCEDES D'ELABORATION DE MATERIAUX (3 ECTS)	10
Couches minces	10
Méthodologie pour la synthèse des matériaux	11
UE : CARACTERISATION DES MATERIAUX I (6 ECTS)	12
Acquisition et traitement du signal	12
Physique expérimentale	12
Application de la théorie des groupes	13
Cristallographie et diffraction des rayons X	13
UE : CARACTERISATION DES MATERIAUX II (4 ECTS)	14
Spectroscopies optiques et vibrationnelles	14
Spectroscopie d'impédance	15
Cristallographie et DRX2	15
UE : PROPRIETES DES MATERIAUX I (4 ECTS)	16
Physique des solides	16
Structure électronique des solides	16

UE : TRANSFERT THERMIQUE ET TRANSFERT ELECTROCHIMIQUE DE CHARGES (5 ECTS)	17
Electrochimie niveau 1	17
Electrochimie niveau 2	17
Transfert thermique / Engineering heat transfer	18
UE : PROPRIETES DES MATERIAUX II (3 ECTS)	19
Propriétés des matériaux II	19
UE : MODELISATION (5 ECTS)	20
Description semi-classique des interactions atomiques	20
Analyse de données	20
Modélisation physique et multi-échelle	21
Problème inversé	21
UE : PREPARATION A L'INSERTION PROFESSIONNELLE I (4 ECTS)	22
Fondement des organisations	22
Projet expérimental 1	22
Ecole thématique	23
UE : PREPARATION A L'INSERTION PROFESSIONNELLE II (6 ECTS)	23
Risques chimiques	23
Initiation au management de projet	24
Projet expérimental 2	24
LIE · STAGE (9 FCTS)	26

INTRODUCTION

E-Mat est un parcours proposé par Nantes Université. Il s'agit d'un cursus intégré (master et doctorat) qui offre de meilleures opportunités à celles et ceux qui le souhaitent d'initier une carrière dans la recherche à l'issue du master.

Le programme se concentre sur l'émergence de matériaux fonctionnels innovants et sur l'optimisation des performances, de la fiabilité et de la flexibilité pour la production, la conversion, le transfert et le stockage de l'énergie de systèmes énergétiques ou de dispositifs et technologies avancés. Il s'appuie sur l'excellence de la recherche en physique, chimie et ingénierie des (nano)matériaux, la modélisation multi-échelle, la caractérisation avancée et la gestion thermique.

Il fait partie du master Sciences de la matière. Les cours du master 1 sont enseignés en français et en anglais. Les étudiantes et étudiants auront la possibilité de réaliser leur projet de recherche dans un environnement international au sein de deux de nos laboratoires de haut niveau : l'Institut des Matériaux de Nantes Jean Rouxel (IMN) & le Laboratoire d'Ingénierie Thermique et d'Energie (LTEN) afin de s'entraîner avec des spécialistes sur des instruments de pointe. Pour perfectionner leur anglais en vue du Master 2, les étudiantes et étudiants ont accès à la plateforme LMS (Learning management system) 7speaking qui offre une grande variété de situations d'apprentissage.

OPPORTUNITES DE CARRIERES

L'obtention d'un master ou d'un doctorat dans le cadre de notre programme ouvre de grandes possibilités d'embauche dans les services de recherche et de développement d'entreprises industrielles actives dans de nombreux secteurs, tels que :

- Matériaux
- Energies nouvelles et renouvelables
- Production, conversion et stockage de l'énergie
- Technologies de l'information et de la communication, microélectronique
- Transport/aérospatial.

Vous pourrez devenir:

- Ingénieur·e et cadre en recherche, développement et innovation
- Ingénieur·e et cadre en cabinet de conseil
- Ingénieur·e matériaux
- Chercheur·euse ou enseignant·e-chercheur·euse après un doctorat...

RESPONSABLES DE PROGRAMME AU NIVEAU MASTER 1

Philippe MOREAU Philippe.Moreau@univ-nantes.fr

Patricia BERTONCINI Patricia.Bertoncini@univ-nantes.fr

LIFUX D'ENSFIGNEMENT

UFR Sciences et Techniques Campus Lombarderie

2, rue de la Houssinière BP 92208 44322 Nantes Cedex 3

APPROCHE PAR COMPETENCES

Les objectifs d'apprentissage de l'ensemble du Master sont formulés comme suit :

- 1. Formuler une solution à un problème complexe dans le domaine des matériaux fonctionnels, des procédés associés et de l'énergie :
 - ✓ en mobilisant les connaissances théoriques et techniques et les modèles les plus pertinents,
 - ✓ en adoptant une démarche et un raisonnement scientifiques rigoureux,
 - ✓ en se positionnant par rapport à l'état de l'art.
- 2. Développer l'expérimentation/modélisation en matériaux et énergie :
 - ✓ en utilisant les protocoles validés et/ou ceux trouvés dans la bibliographie,
 - ✓ en mettant en œuvre rigoureusement le protocole expérimental ou de modélisation,
 - ✓ en respectant les bonnes pratiques de laboratoire,
 - ✓ en développant la démarche expérimentale/modélisation pour en assurer la reproductibilité et la fiabilité.
- 3. Analyser les données recueillies dans le cadre d'une recherche fondamentale ou appliquée :
 - ✓ en choisissant les outils et les représentations graphiques les plus appropriés
 - ✓ en les confrontant de manière critique aux théories actuelles et aux résultats trouvés dans l'étude bibliographique,
 - ✓ en échangeant des informations avec des spécialistes si nécessaire.
- 4. Intégrer la recherche et le développement dans un environnement professionnel industriel ou académique:
 - ✓ en délivrant un message scientifique structuré, clair et synthétique, tant à l'écrit (article, rapport) qu'à l'oral (réunion d'équipe, conférence), dans sa langue maternelle et en anglais, adapté au public et au contexte,
 - ✓ en respectant les principes d'éthique, de déontologie, de responsabilité environnementale et d'intégrité scientifique,
 - ✓ en développant ses connaissances et ses compétences par une formation continue et une veille permanente,
 - ✓ en participant à l'innovation technologique et/ou à la création de connaissances.

PLANIFICATION DES COURS

De septembre à janvier :	De février à mars :	D'avril à juin/juillet
Cours et travaux pratiques du	Cours et travaux pratiques du	2 à 4 mois de stage
semestre 1	semestre 2	

NB : Les étudiantes et étudiants inscritsdans une université étrangère peuvent effectuer un stage dans l'un de nos laboratoires partenaires à tout moment de l'année, sous réserve des contraintes de leur institution d'origine.

ARCHITECTURE DU PROGRAMME

Le programme du Master 1 est organisé en groupes d'UE:

SEMESTRE 1	SEMESTRE 2	
Fondamentaux de physique	X	
Elaboration de nanomatériaux I		
Caractérisation	des matériaux l	
Propriétés des matériaux et systèmes pour l'énergie		
Préparation à l'insertion professionnelle I		
Modélisation I		
Х	Stage	

INTEGRER LE MASTER E-MAT

Comment candidater?

Les prérequis et différentes procédures d'admission sont détaillées sur la fiche formation du site de Nantes Université:

https://sciences-techniques.univ-nantes.fr/formations/masters/cursus-master-et-doctorat-materiaux-innovants-et-systemes-energetiques-e-mat-niveau-master

Bourse

Une bourse d'accueil de 1 500 € est accordée aux étudiantes et étudiants étrangers qui s'inscrivent dans notre cursus.

Les étudiantes et étudiants peuvent également bénéficier d'une bourse mensuelle de 900€ (sous réserve d'éligibilité).

Il est également possible de postuler aux bourses d'excellence G. Eiffel ou à d'autres bourses proposées par les ambassades.

Fondamentaux de physique

UNITÉ D'ENSEIGNEMENT (UE) : PHYSIQUE STATISTIQUE ET MATIERE MOLLE (3 ECTS)

Physique statistique

UE de rattachement : Physique statistique et matière molle (3ECTS)		
Nombre d'heures :	16h	
Année/semestre : I	M1/S1	Langue d'enseignement : français
Enseignant	Patricia Bertoncini	
référent :		
Objectifs:	Connaitre la relation entre la physique statistique et la thermodynamique	
	 Savoir faire le calcul des grandeurs t 	hermodynamiques dans les ensembles micro-
	canonique, canonique et grand canonique	
Contenus	1. Notions et outils de base de la physique statistique	
abordés :	2. Système isolé à l'équilibre – Distribution microcanonique	
	3. Systèmes en équilibre avec thermostat – Distribution canonique	
	4. Systèmes en situation grand canonique	
Modalités	Cours et exercices	
d'enseignement :		
Bibliographie:	Physique statistique de B. Diu, C. Guthmann, D. Lederer et B. Roulet, édition Hermann	
	Physique statistique des phénomènes élémentaires aux phénomènes collectifs de C. Texier	
	et G. Roux, édition Sciences Sup Dunod	
	Physique statistique cours, exercices et problèmes corrigés de H. T. Diep, édition ellipses	
Prérequis:	Unités d'enseignement de base d'une Licence de Physique / Physique-Chimie	

Matière molle

UE de rattachement : Physique statistique et matière molle (3ECTS)			
Nombre d'heures :	16h		
Année/semestre : I	M1/S1	Langue d'enseignement : anglais	
Enseignant référent :	Patricia Bertoncini		
Objectifs:	Comprendre comment les caractéristiques d'un objet de la matière molle à l'échelle atomique et/ou moléculaire déterminent ses propriétés à l'échelle macroscopique.		
Contenus	1. Introduction à la Physique de la mat	ière molle	
abordés:	2. Interactions intermoléculaires		
	3. Mesures de force à l'échelle de la molécule / cellule unique		
	4. Surfaces, interfaces et phénomènes de mouillabilité		
	5. Applications		
Modalités	Cours et exercices, travail sur articles		
d'enseignement :			
Bibliographie:	Intermolecular and surface forces, J. Israelachvili, Academic Press		
	Physique de la matière molle, F. Brochard-Wyart, P. Nassoy et PH. Puech, DUNOD		
	Soft Matter Physics ; Editors · Mohamed Daoud, Claudine E. Williams ; DOI ·		
	https://doi.org/10.1007/978-3-662-03845-1; Publisher · Springer		
Prérequis :	Unités d'enseignement de base d'une Licence de Physique / Physique-Chimie		

UE : PHYSIQUE QUANTIQUE ET ATOMIQUE (5 ECTS)

Physique quantique

UE de rattachement : Physique quantique et atomique (5 ECTS)		
Nombre d'heures :	: 24h	
Année/semestre :	: M1/S1 Langue d'enseignement : français	
Enseignant référent :	Thierry Gousset	
Objectifs:	 Déterminer les modifications du spectre en énergie pour des perturbations simples Connaitre le formalisme de la théorie des perturbations dépendantes du temps Calculer la probabilité de transition pour des perturbations temporelles simples Savoir faire des calculs dans l'approximation de Born pour des potentiels simples 	
Contenus abordés :	 Rappels (oscillateur harmonique quantique, moment cinétique quantique, atome d'hydrogène) Diffusion par un potentiel (amplitude de diffusion, section efficace, approximation de Born) Perturbations stationnaires (premier et second ordres pour des états non dégénérés ; premier ordre pour des états dégénérés) Application à l'étude de la structure fine de l'atome d'hydrogène Perturbations dépendantes du temps (perturbation en échelon ou sinusoïdale, règle d'or de Fermi) Application à l'étude de l'interaction d'un atome avec une onde électromagnétique 	
Modalités d'enseignement :	Cours magistral et travaux dirigés.	
Prérequis :	Mécanique quantique : niveau licence. Transformation de Fourier, analyse dans le plan complexe.	

Physique atomique

UE de rattachemei	nt : Physique quantique et atomique (5 I	ECTS)
Nombre d'heures :	24h	
Année/semestre :	M1/S1	Langue d'enseignement : mixte français / anglais
Enseignant référent :	Arezki Mokrani	
Objectifs:	 Connaître les approximations permettant d'aborder la structure électronique des atomes. Comprendre l'implication d'un champ externe (électrique, magnétique) sur la structure électronique d'un atome. Comprendre les différentes transitions électroniques en présence d'un champ électromagnétique. Connaître les notations spectroscopiques et leur signification, les ordres de grandeur dans les spectres électroniques, vibrationnels et rotationnels dans une molécule. 	
Contenus abordés :	Théorie quantique des atomes. Atomes Hydrogénoïdes. Atomes à plusieurs électrons. Magnétisme des atomes Atomes dans un champ externe. Interaction d'un atome avec une onde électromagnétique. Transitions radiatives. Règles de sélection. Structure fine. Termes spectraux. Introduction à la physique moléculaire. Spectres vibrationnels et rotationnels.	
Modalités	Cours-TD	
d'enseignement:	Support de cours sur madoc	

Elaboration de (nano) matériaux I

UE : SYNTHESE CHIMIQUE (3 ECTS)

Chimie de coordination et transitions électroniques

UE de rattachemei	nt : Synthèse chimique (3 ECTS)	
Nombre d'heures :	12h	
Année/semestre:	M1/S1	Langue d'enseignement : français
Enseignant référent :	En cours d'affectation	
Objectifs:	A l'issue de ce module, l'étudiant sera en capacité de : • Caractériser une molécule inorganique ou un solide par son spectre d'absorption • Identifier la nature de la transition électronique • Connaître la terminologie associée	
Contenus abordés :	 Théorie du champ cristallin avec corrélation électronique. Transitions électroniques et règles de sélection. Application: caractérisation via les spectres d'absorption UV-visible de différents complexes de métaux de transition. 	
Modalités d'enseignement :	Cours magistral et travaux dirigés.	
Bibliographie:	« Chimie Inorganique », J.E. HUHEEY, E.A. KEITER et R.L. KEITER, De Boeck Université (2000) « Physico-Chimie Inorganique », S.F.A. KETTLE, De Boeck Université (1999) « Advanced Inorganic Chemistry », F.A. COTTON, G. WILKINSON, C.A. MURILLO, Wiley (1999) « Chemistry of the elements », second edition, N.N. GREENWOOD et A. EARNSHAW, Pergamon Press (1997) « Structure électronique des éléments de transition », O. KAHN, PUF (1977)	
Prérequis :	Mécanique quantique : niveau licence. Transformation de Fourier, analyse da	

Condensation inorganique en solution aqueuse

UE de rattachement : Synthèse chimique (3 ECTS)		
Nombre d'heures : 8h		
Année/semestre:	M1/S1	Langue d'enseignement : mixte français / anglais
Enseignant	Rémi Dessapt	
référent :		
Objectifs:	 Etablir les réactions d'hydrolyse et de neutralisation de complexes d'ions métalliques en solution aqueuse Appliquer le modèle des charges partielles à un complexe d'ion métallique en solution aqueuse pour déterminer son électronégativité moyenne, ainsi que les charges portées par les différents atomes (ou groupements d'atomes) dans la molécule Prévoir à partir des charges partielles des atomes la stabilité d'un complexe vis-à-vis des réactions de condensation et de précipitation en solution aqueuse Etablir une filiation structurale entre la ou les espèces condensées et le précurseur monomérique en solution aqueuse Identifier la nature des réactions mises en jeu lors de la condensation des cations métalliques 	
Contenus	1.Introduction	
abordés :	2. Les cations métalliques en solutions aqueuses	

	3. Le modèle des charges partielles4. Condensation et précipitation des cations métalliques en solution aqueuse
Modalités	Cours, travaux dirigés et travaux pratiques
d'enseignement :	

Introduction à la chimie moléculaire inorganique

UE de rattachement : Synthèse chimique (3 ECTS)			
Nombre d'heures :	Nombre d'heures : 8h		
Année/semestre : I	e : M1/S1 Langue d'enseignement : français		
Enseignant	Hélène Serier-Brault		
référent:			
Objectifs:	L'objectif de cet enseignement est d'acquérir des notions de bases sur les complexes		
	métalliques.		
Contenus	A : Présentation des complexes des métaux de transition		
abordés :	B : Le modèle du champ cristallin		
	C : Stabilité des complexes des métaux de transition		
Modalités	Cours-TD		
d'enseignement :			

UE : PROCEDES D'ELABORATION DE MATERIAUX (3 ECTS)

Couches minces

LIE de vette de coco	- L. Dua - É d é a d'élah amakian dan mankénia.	(2 FCTC)
UE de rattachement : Procédés d'élaboration des matériaux (3 ECTS)		
Nombre d'heures :	:16h	
Année/semestre :	nnée/semestre: M1/S2 Langue d'enseignement: mixte français / anglais	
Enseignant	Jérémy Barbé	
référent :	-	
Objectifs:	• Comprendre les principaux domaines d'application et les techniques de dépôt de couches minces, les mécanismes de surface	
	 Choisir une technique de dépôt de c 	ouches minces en fonction d'une application donnée.
	• Évaluer le flux d'atomes évaporés ou pulvérisés et être capable d'estimer le taux de dépôt	
	et le taux de contamination par les gaz résiduels	
Contenus	Principaux domaines d'application des couches minces	
abordés :	Panorama des techniques de dépôt de couches minces.	
	Mécanismes de surface conduisant à la croissance d'une couche mince	
	Principe de la pulvérisation cathodique, de l'évaporation thermique, du dépôt chimique en	
	phase vapeur et des techniques de dépôt atmosphérique.	
Modalités	Une évaluation : DS	
d'enseignement:		
Bibliographie:	Thin films - R.A. Powell, S.M. Rossnagel - Academic Press	
Prérequis :	Notions de thermodynamique : Distribution de Maxwell-Boltzman, loi de Clapeyron -	
·	I	de cristallographie : Réseau cristallin de Bravais

Méthodologie pour la synthèse des matériaux

	nt : Procédés d'élaboration de matériau	x (3 ECTS)
Nombre d'heures		
Année/semestre : M1-S2 Langue d'enseignement : français		Langue d'enseignement : français
Enseignant référent :	Philippe Poizot	
Objectifs:	Cette EC vise à introduire différentes voies de synthèses courantes (chimiques et électrochimiques) pour l'élaboration de matériaux inorganiques et hybrides organiques-inorganiques. A l'issue de cet enseignement, l'étudiant sera capable de : • Maîtriser la terminologie afférente aux différents procédés de synthèse • Proposer des stratégies d'élaboration de matériaux sur la base d'une approche raisonnée (recours à des connaissances en thermodynamique, en cinétique et en électrochimie) • Appréhender la relation entre la structuration d'un matériau (taille, morphologie, dispersité) et la voie de synthèse mise en jeu pour le concevoir.	
Contenus abordés :	 Synthèses par voie solide (voie céramique): choix et mise en forme des réactifs, contrôle de l'atmosphère, trempe, phénomène de croissance cristalline, frittage, broyage et notion de mécanosynthèse. Chimie douce: après une présentation des paramètres cruciaux contrôlant la précipitation de solides inorganiques (solvant, pH, température, précurseurs, réactions de condensation, nucléation, croissance, « template »), différents procédés de synthèse seront abordés (synthèse par décomposition de complexes de coordination, le procédé Pechini, synthèse solvothermale, synthèse polyol, synthèse par intercalation, synthèse par voie sol-gel, processus d'auto-assemblage). 	
Modalités	Cours et travaux dirigés en présentiel	
d'enseignement :		

Caractérisation des matériaux I

UE : CARACTERISATION DES MATERIAUX I (6 ECTS)

Acquisition et traitement du signal

UE de rattachement : Caractérisation des matériaux I (6 ECTS)			
Nombre d'heures	: 20h		
Année/semestre : I	Année/semestre : M1 / S1 Langue d'enseignement : français		
Enseignant	Clément HUNEAU		
référent:			
Objectifs:	 Comprendre: les opérations sur les signaux, la notion de couleur de bruit, les caractéristiques des filtres analogiques, la notion de filtre spatial Prédire qualitativement le spectre d'un signal (1D) ou d'une image (2D) Calculer numériquement des transformées de Fourier Prédire et éviter le repliement spectral Utiliser un filtre numérique Charger, représenter et traiter des signaux en langage matlab 		
Contenus	1 - Des signaux		
abordés :	2 - Des spectres		
	3 - Des filtres		
Modalités	CM/TD/TP		
d'enseignement :			
Prérequis :	Calcul intégral		
	Base de programmation		

Physique expérimentale

LIE de vette eb sisse	at. Caractárication des matáricos L/CEC	TC)
UE de rattachement : Caractérisation des matériaux I (6 ECTS)		
Nombre d'heures :	15h	
Année/semestre : I	M1 / S1	Langue d'enseignement : mixte français / anglais
Enseignant référent :	Patricia Bertoncini	
Objectifs:	 Mettre en œuvre une démarche expérimentale: suivre un protocole de mesure, analyser des données expérimentales, comparer avec un modèle, interpréter les résultats, élaborer une synthèse. Prendre connaissance et appliquer les consignes de sécurité. Rédiger clairement un compte-rendu scientifique en respectant les conventions et les règles spécifiques de la discipline. Travailler de manière autonome et en équipe. 	
Contenus abordés :	Diverses expériences sont proposées permettant d'approfondir les connaissances et la compréhension de certains aspects de la physique du solide et de la physique atomique et moléculaire.	
Modalités d'enseignement :	Travaux pratiques en binômes / évaluation individuelle	
Bibliographie:	Divers documents décrivant les appareils, les expériences à faire, les notions essentielles abordées.	
Prérequis :	Unités d'enseignement de base d'une Licence de Physique / Physique-Chimie	

Application de la théorie des groupes

UE de rattacheme	nt : Caractérisation des matériaux I (6 EC	CTS)
Nombre d'heures :	: 12h	
Année/semestre: M1/S1		Langue d'enseignement : français
Enseignant	Aurelian Popa	
référent :		
Objectifs:	Connaître les concepts de la symétrie (éléments et opérations)	
	Identifier le Groupe ponctuel d'un ce	·
	 Manipuler la projection stéréograph 	
	Trouver les représentations avec dif	
	• atomiques, liaisons chimiques); ma	
	•	en représentations irréductibles du groupe ponctuel
	Trouver les Combinaisons Linéaires	· · · · · · · · · · · · · · · · · · ·
	 Manipuler l'Opérateur Projection et la procédure d'orthogonalisation de Gram-Schmidt Définir et identifier les modes de vibration d'une molécule 	
	Construire et interpréter un diagramme d'Orbitales Moléculaires	
Contenus	Opérations et éléments de symétrie	
abordés :	Groupes ponctuels (définition, classification, identification)	
	Projection stéréographique d'un groupe ponctuel	
	Représentations non dégénérées, représentations matricielles, représentations dégénérées, réduction en RI	
	Somme directe, Produit direct, Opérateur projection, Combinaisons Linéaires Adaptées à la	
	Symétrie (CLAS), Orthogonalisation des bases de vecteurs	
	Applications de la théorie des groupes aux vibrations moléculaires (IR, RAMAN) et aux	
	liaisons chimiques (Orbitales Molécula	aires)
Modalités	Cours et travaux dirigés	
d'enseignement :		

Cristallographie et diffraction des rayons X

115 da watta ala awa a	nt. Canatária tian da matária m. 1/6 F6	276)	
	nt : Caractérisation des matériaux I (6 EC	.15)	
Nombre d'heures			
Année/semestre :	M1/S1	Langue d'enseignement : français	
Enseignant	Olivier Hernandez		
référent :			
Objectifs:	Manipuler les opérations de symétrie en utilisant la notation matricielle		
	Décrire la structure d'un solide avec le formalisme des groupes d'espace		
	• Utiliser l'espace réciproque pour interpréter le phénomène de diffraction par un cristal		
	Déterminer la contribution du réseau et du motif sur le cliché de diffraction		
	• Connaitre les étapes de la résolution structurale à partir d'un cliché de diffraction d'un		
	monocristal		
Contenus	Cristallographie:		
abordés : Réseaux direct / réciproque - Notation de Seitz des opérations de symétrie - Utilisat		de Seitz des opérations de symétrie - Utilisation des	
	groupes d'espace		
	Diffraction des rayons X :		
	Utilisation de la construction d'Ewald - Applications de la loi de Bragg		
	Facteur de structure et facteur de forme d'un cristal - Conditions d'extinctions		
	systématiques - Méthodes expérimentales - Application de la résolution structurale <i>ab-initio</i>		
	sur monocristal		
Modalités	Cours et travaux dirigés, en présentiel et distanciel		
d'enseignement :			

UE : CARACTERISATION DES MATERIAUX II (4 ECTS)

Spectroscopies optiques et vibrationnelles

UE de rattachement : Caractérisation des matériaux II (4 ECTS)			
Nombre d'heures :	Nombre d'heures : 23.30h		
Année/semestre: M1/S2		Langue d'enseignement : français	
Enseignant référent :	Maxime Bayle		
Objectifs:	Décrire formellement une vibration dans une molécule et un solide,		
	Expliquer le concept de fréquence p	ropre de vibration,	
	 Utiliser les techniques expérimental permettant 	es d'absorption infrarouge et de diffusion Raman	
	 d'exciter ces vibrations et de les ana 	lyser,	
		e des groupes pour dénombrer les modes de vibration	
	de molécules et de cristaux, et d'ant	iciper leur activité infrarouge et Raman.	
	• Décrire le fonctionnement de différe	nts lasers.	
Contenus	Fondamentaux de la spectroscopie vibrationnelle		
abordés :	1. Dynamique moléculaire et cristalline		
	2. Interactions lumière-matière3. Spectroscopies Infrarouge et Raman		
	Introduction aux lasers		
	1. Historique et mécanismes mis en jeu		
	2. Types de laser et classification		
	3. Fonctionnement de plusieurs lasers (gaz, solide, semiconducteurs)		
	Théorie des groupes appliquée à la spectroscopie optique		
	1. Groupes et opérations de symétrie		
	2. Tables de caractères		
	3. Représentation des mouvements at	omiques	
	4. Introduction à l'étude de cristaux		
Modalités	Cours, travaux dirigés et travaux pratiques		
d'enseignement:			

Spectroscopie d'impédance

UE de rattachement : Caractérisation des matériaux II (4 ECTS)			
Nombre d'heures :	Nombre d'heures : 16h		
Année/semestre :	Année/semestre: M1/S2 Langue d'enseignement: mixte français / anglais		
Enseignant référent :	Caroline Borderon		
Objectifs:	 Identifier et formuler les propriétés de filtres Identifier et différencier les propriétés physiques associées au diagramme d'Argand (spectroscopie d'impédance). 		
Contenus abordés :	Nous étudions les fonctions de transfert de filtres de différents ordres (diagramme de Bode en Gain et en phase). Une analogie entre les circuits électriques et les caractéristiques physiques des matériaux sera ensuite effectuée. 1. Filtre du 1er ordre et du 2nd ordre. Fonction de transfert et diagramme de Bode 2. Spectroscopie d'impédance. Diagramme d'Argand. Modélisation des matériaux par des circuits électriques simples. Modèle de Debye. Modèle de Cole-Cole et Davidson-Cole.		
Modalités d'enseignement :	Cours et travail personnel : synthèses, exercices et problèmes.		
Bibliographie:	 R. MacDonald, "Impedance spectroscopy, Theory, Experiment and Application", Wiley (2005). R. Coelho, B. Aladenize, « Les diélectriques, propriétés diélectriques des matériaux isolants », Traité des nouvelles technologies Série matériaux, Hermes (1993). 		

Cristallographie et DRX2

UE de rattachement : Caractérisation des matériaux II (4 ECTS)			
Nombre d'heures :	Nombre d'heures : 4h		
Année/semestre : I	nnée/semestre : M1 S2 Langue d'enseignement : français		
Enseignant	Hélène Serier-Brault		
référent:			
Objectifs:	Réaliser des exercices pratiques liés à la diffraction des rayons X sur poudre.		
Contenus	- Indexation d'un diagramme		
abordés:	- Affinement des paramètres de maille		
	- Modélisation d'un diagramme de diffraction de poudre		
Modalités	Travail en binômes en salle informatique.		
d'enseignement :			
Prérequis:	Les prérequis sont les objectifs de l'UE <i>M1 E-MAT - Cristallographie et diffraction des rayons X</i>		

Propriétés des matériaux et systèmes pour l'énergie

UE: PROPRIETES DES MATERIAUX I (4 ECTS)

Physique des solides

UE de rattacheme	nt : Propriétés des matériaux I (4 ECTS)	
Nombre d'heures :	32h	
Année/semestre : M1, semestre 1 Langue d'enseignement : Français		Langue d'enseignement : Français
Enseignant	Jean-Luc Duvail	
référent:		
Objectifs:		oliquer les notions fondamentales sur les propriétés
	1	ainsi que la corrélation entre structure cristalline,
	structure électronique ou phononique thermiques, voire mécaniques.	ue et les propriétés électriques, optiques et
		loitées dans les dispositifs et systèmes de multiples
	domaines applicatifs. Il s'agit du socle p	pour l'ensemble des modules en lien avec les matériaux
	fonctionnels et l'énergie à un niveau plu	us avancé en M1 et M2.
Contenus	Introduction et rappels : Structures cristallines – Réseaux réciproques	
abordés :	Partie A : Structure vibronique, phono	ns et propriétés associées
	1. Vibrations et phonons dans les soli	ides
	2. Propriétés thermiques dues aux phonons	
	3. Propriétés optiques en lien avec les phonons	
	Partie B : Structure électronique et propriétés associées	
	1. Gaz des électrons libres de Fermi – Propriétés des métaux	
	 Electrons quasi-libres – Bandes d'énergie – Propriétés des métaux de transition Semi-conducteurs, isolants et semi-métaux Partie C : Jonction pn et contact métal/semiconducteur : vers les composants électroniques 	
	1. Semi-conducteurs hors équilibre	
	2. Jonction pn	
	3. Contact métal/semi-conducteur	
Modalités	Pédagogie inversée : préparation du cours en autonomie. En classe : discussion sur les	
d'enseignement:	notions importantes ; exercices applicatifs.	
Bibliographie:		physics 8 th ed. ISBN: 978-1-119-45416-8
	N. Ashcroft, N. D. Mermin, Solid state p	•
Prérequis :	Electromagnétisme - Mécanique du point - Thermodynamique - Physique statistique - Physique quantique	

Structure électronique des solides

LIE da vatta da a			
UE de rattachement : Propriétés des matériaux I (4 ECTS)			
Nombre d'heur	es : 12h		
Année/semestr	Année/semestre: M1/S1 Langue d'enseignement: mixte français / anglais		
Enseignant	Jean Le Bideau	Jean Le Bideau	
référent :			
Objectifs:	 Interpréter qualitativement un diagramme de structure électronique d'un solide. Appréhender les effets possibles d'anisotropies de structures cristallographiques ou de structures électroniques. 		
Contenus	1. Rappels - Généralités		
abordés :	2. Description structurale		
l	3. La structure électronique des solides		

	Des exemples concrets : TiS2 et TiO2, graphite et diamant : structures cristallographiques, structures électroniques, propriétés.
Modalités	Cours et trabaux dirigés. Analyses de document en distanciel asynchrone
d'enseignement :	
Bibliographie:	Introduction à la physique des solides - C. Kittel
	Intruduction à la chimie du solide - L. Smart & E. Moore
	Basic solid state chemistry - A. R. West
	Electronic structure of solids - E. Canadell, ML. Doublet, C. lung

UE : TRANSFERT THERMIQUE ET TRANSFERT ELECTROCHIMIQUE DE CHARGES (5 ECTS)

Electrochimie niveau 1

UE de rattachement : Transfert thermique et transfert électrochimique de charges (5 ECTS)		
Nombre d'heures :	12h	
Année/semestre : I	Année/semestre : M1-S1 Langue d'enseignement : Français	
Enseignant	Mohammed Boujtita	
référent :		
Objectifs :	réactions de transferts de charge à l'in transport de matière dans l'électrolyte capable de : • Maîtriser les différents aspects d'une	ctrolytique et du matériau d'électrode sur le
Contenus	1. Processus électrochimique, notions	de potentiel et courant
abordés :	 Réactions de transfert d'électrons à l'interface électrode/solution électrolytique Loi de Butler-Volmer, loi empirique de Tafel, détermination des paramètres cinétiques (α et k°) d'une réaction électrochimique 	
	4. Transport de matière : diffusion, convection et migration	
	5. Techniques ampérométriques à potentiel contrôlé, voltampérométrie cyclique en régime convectif et régime de diffusion, chronoampérométrie et chronocoulométrie.	
Modalités	Cours et travaux dirigés en présentiel	
d'enseignement :		
Bibliographie:	Electrochemical Methods: Fundament	als and Applications, J. Allen Bard / Larry R. Faulkner
Prérequis :	Electrocinétique, oxydoréduction en solution aqueuse, pile galvanique	

Electrochimie niveau 2

UE de rattachement : Transfert thermique et transfert électrochimique de charges (5 ECTS)			
Nombre d'heure	Nombre d'heures : 18h		
Année/semestre	Année/semestre : M1-S1 Langue d'enseignement : Français		
Enseignant référent :	Philippe Poizot		
Objectifs:	introduisant les générateurs élec ainsi que des techniques avancée A l'issue de cet enseignement, l'é	Cet enseignement vise à approfondir les concepts de base de l'électrochimie en introduisant les générateurs électrochimiques, la réactivité électrochimique à l'état solide, ainsi que des techniques avancées en électrochimie analytique. A l'issue de cet enseignement, l'étudiant devra être capable de : • Décrire les principaux générateurs électrochimiques et leur mode de fonctionnement	

	Identifier les critères de performance électrique des piles et accumulateurs courants	
	Proposer un protocole pour analyser un échantillon complexe et reconnaître les	
	processus chimiques et électrochimiques impliqués	
Contenus	Partie : Générateurs électrochimiques	
abordés :	1. Contexte énergétique	
	2. Des réactions redox aux réactions électrochimiques	
	3. Aspect thermodynamique – force électromotrice à l'équilibre (I=0)	
	4. Aspect cinétique – force électromotrice hors équilibre (I≠0)	
	5. Grandeurs caractéristiques	
	6. L'insertion (intercalation) électrochimique	
	7. Géométries de cellules et de batteries	
	8. Caractérisations électrochimiques de cellules	
	9. Exemples de systèmes non rechargeables (piles)	
	10. Exemples de systèmes rechargeables (accumulateurs –batteries)	
	Partie : Cinétique électrochimique et analytique	
	1. Electrochimie analytique des milieux complexes	
	2. Mécanismes EC', ECE, ECEC	
	3. Techniques électrochimiques avancées (Méthodes impulsionnelles)	
Modalités	Cours et travaux dirigés en présentiel et Formation pratique (TP en présentiel)	
d'enseignement :		
Prérequis :	Electrochimie niveau 1	

Transfert thermique / Engineering heat transfer

UE de rattacheme	nt : Transfert thermique et transfert élec	trochimique de charges (5 ECTS)
Nombre d'heures :	24h	
Année/semestre : I	M1-S1	Langue d'enseignement : Anglais
Enseignant référent :	Xavier PY	
Objectifs:	 Connaître et formaliser les mécanismes fondamentaux de transferts thermiques Connaître les propriétés clefs des matériaux en transferts thermiques sont connues Identifier les mécanismes de transferts thermiques impliqués dans un système, décrire leur couplage et quantifier leurs contributions Etablir les bilans thermiques des systèmes en régime permanent et transitoire 	
Contenus abordés :	L'enseignement de thermiques des systèmes en régime permanent et transitoire L'enseignement de thermique a pour objet de maîtriser les différents mécanismes fondamentaux de transferts thermiques (conduction, convection, rayonnement) ainsi que leurs couplages éventuels, en système monophasique ou polyphasique, avec ou sans changement d'état ou réaction chimique, d'établir des bilans thermiques en régime permanent comme en régime transitoire. Les travaux dirigés sont autant d'illustrations de ces transferts appliqués à différents types de matériaux (homogènes, hétérogènes, composites, anisotropes) au sein de procédés énergétiques (notamment énergies renouvelables).	
Modalités d'enseignement :	Cours et travaux dirigés en présentiel	
Bibliographie :	Fundamentals of Heat and Mass Transfer. Theodore L. Bergman, Adrienne S. Lavine, Frank P. Incropera, David P. DeWitt, Wiley, 2016, ISBN: 1118989171, 9781118989173.	

UE : PROPRIETES DES MATERIAUX II (3 ECTS)

Propriétés des matériaux II

Nombre d'heu			
Année/semest			
Enseignant	Benoit GUIFFARD		
référent :	Partia Propriétés diéloctriques		
Objectifs:	Partie Propriétés diélectriques		
	Connaître l'origine des différents mécanismes de polarisation, les modéliser et relier ces mécanismes aux processus de récompanse et de relevation.		
	 mécanismes aux processus de résonnance et de relaxation Comprendre le couplage entre une onde électromagnétique et la polarisation 		
	 Comprendre le couplage entre une onde electromagnétique et la polarisation Connaître la relation de Lyddane Sachs Teller, l'importance de la notion de polaron 		
	 Confidence de la notion de Lyddane Sachs Teller, i importance de la notion de polaron Comprendre l'origine des propriétés piézoélectriques et pyroélectriques 		
	 Comprendre la ferroélectricité : origine, l'organisation en domaines, mur de domaines 		
	 Comprendre la refroelectricité : origine, l'organisation en domaines, mui de domaines Connaître les notions de champ coercitif, de polarisation rémanente 		
	 Connaître quelques applications des propriétés des diélectriques 		
	Partie Propriétés magnétiques		
	Reconnaitre un matériau paramagnétique, diamagnétique ou ferromagnétique à partir d		
	mesures de cycles d'aimantation M(H)		
	 Connaitre les ordres de grandeur des principales grandeurs magnétiques pour les métau. 		
	ferromagnétiques : susceptibilité, aimantation, champs coercitif/à saturation		
	Expliquer les mécanismes responsables des diverses formes de magnétisme		
	Expliciter l'origine du ferromagnétisme itinérant, de la notion de matériau magnétique		
	doux/dur en lien les anisotropies magnétiques		
	Expliquer l'effet de la température sur le comportement magnétique d'un matériau		
	Identifier si un matériau est supraconducteur		
	Expliciter le lien propriété - fonction d'usage		
	Partie Matériaux piezo/flexo-électriques : propriétés et applications		
	• Connaître les différents mécanismes de couplage électromécanique, les différentes		
	familles de matériaux piézo-électriques et les dispositifs classiques les intégrant		
	Manipuler les équations constitutives macroscopiques de la piézo- et flexo-électricité		
	 Connaître les figures de mérite pour les applications capteur/actionneur 		
	Déterminer les coefficients piezo- et flexo-électrique à partir des caractéristiques des		
	dispositifs et inversement		
Contenus	<u>Partie Propriétés diélectriques</u>		
abordés :	1. Mécanismes de polarisation – Relaxation diélectrique.		
	2. Propriétés optiques des diélectriques.		
	3. Transport dans les milieux isolants.		
	4. Piézoélectricité, pyroélectricité.		
	5. Matériaux ferroélectriques.		
	Partie Propriétés magnétiques		
	1. Rappels des états magnétiques de la matière		
	2. Métaux ferromagnétiques		
	3. Oxydes magnétiques		
	4. Introduction aux matériaux supraconducteurs		
	Partie matériaux piezo/flexo-électriques : propriétés et applications		
	1 - Propriétés des matériaux piézoélectriques. Type et applications		
	2 -Les transducteurs piézoélectriques en régime statique ou quasi-statique 3. Flexoélectricité		
Modalités			
	Cours et travaux dirigés		
d'enseigneme	nt.		

Modélisation

UE : MODELISATION (5 ECTS)

Description semi-classique des interactions atomiques

UE de rattachemer	nt : Modélisation (5 ECTS)	
Nombre d'heures : 15 h		
Année/semestre : M1/S2 Langue d'enseignement : mixte français / angl		Langue d'enseignement : mixte français / anglais
Enseignant	Yann Claveau	
référent :		
Objectifs:	Savoir mettre en œuvre une étude d	'un fluide par dynamique moléculaire : de la création
	du système à l'analyse des trajectoir	es pour en déduire les propriétés du fluide
	 Modéliser des phénomènes physiqu 	es par la méthode Monté-Carlo cinétique
Contenus	Interactions semi-classiques intra et in	termoléculaires
abordés :	Dynamique moléculaire	
	Monté-Carlo cinétique	
	Ensembles thermodynamiques	
	LAMMPS	
	Python	
	Calcul parallèle	
Modalités	Cours / TP en salle informatique	
d'enseignement :	Evaluation sur 1 TP et 1 projet	
	En fonction du projet choisi, le travail peut être ensuite publié.	
Bibliographie:	Computer simulation of liquids – Tildesley	
	Statistical mechanics : theory and mol	ecular simulation – Tuckerman –
	Computer Simulation Using Particles -	RW Hockney & JW Eastwood – Adam Hilger
	Hanbook of Monte-Carlo Methods – Di	rk P. Kroese, Thomas Taimre, Zdravko I. Botev, - Wiley
Prérequis :	Base en programmation python (calcu	l scientifique de base + utilisation de fonctions),
	Linux, bases de thermodynamique	

Analyse de données

UE de rattacheme	nt : Modélisation (5 ECTS)	
Nombre d'heures :	: 5.30h	
Année/semestre :	M1/S2	Langue d'enseignement : français
Enseignant	Clément Huneau	
référent:		
Objectifs:	• Comprendre les distributions de pro	babilités multivariées et la notion de covariance
	Comprendre le concept d'estimateur, et de compromis biais-variance	
	Modéliser et résoudre des problèmes classiques d'analyse de données	
Contenus	1/ Signal/Vecteur aléatoire	
abordés :	2/ Modèle d'observation linéaire	
	3/ Estimation paramétrique (ajustement)	
	4/ Classification	
Modalités	Cours interactif et illustré et travaux pratiques	
d'enseignement :		
Bibliographie:	Candelpergher, Bernard. 2013. Théorie des probabilités. Une introduction élémentaire.	
	Mathématiques en devenir. Paris: Calvage et Mounet.	

Modélisation physique et multi-échelle

UE de rattacheme	nt : Modélisation (5 ECTS)	
Nombre d'heures	: 18 h	
Année/semestre: M1 / S2		Langue d'enseignement : mixte français / anglais
Enseignant référent :	Stéphane Cuenot	
Objectifs:	 A l'issue de ce cours, l'étudiant(e) sera capable de : Maîtriser les étapes de modélisation d'un problème physique Maitriser la convergence d'une solution numérique en fonction du maillage Connaître les différentes étapes de modélisation d'un problème physique 	
Contenus abordés :	Les problèmes physiques abordés couvriront principalement les domaines de la mécanique des solides, des transferts de chaleur, de la mécanique des fluides, de l'électromagnétisme et des transports d'espèces diluées 1. Introduction à la résolution numérique par éléments finis 2. Modélisation en 2D et 3D de problèmes physiques simples et complexes 3. Etapes de résolution : dessin, conditions limites, maillage, solveur, post-traitement, analyse 4. Contrôle du maillage, convergence de la solution numérique, relation maillage-temps de calcul 5. Optimisation du maillage pour un problème et une pièce donnée 6. Choix de l'étude numérique (stationnaire, transitoire, paramétrique, fréquentielle) et du solveur adapté 7. Post-traitement des résultats numériques	
Modalités d'enseignement :	Cours, travaux dirigés et pratiques pui	s micro-projet de modélisation en binôme (6h)

Problème inversé

UE de rattacheme	nt : Modélisation (5 ECTS)		
Nombre d'heures	: 9.30h		
Année/semestre: M1/S2 Langue d'enseignement: mixte français / ar		Langue d'enseignement : mixte français / anglais	
Enseignant	Clément Huneau		
référent :			
Objectifs:	 Comprendre les problèmes mal pos 	sés et la nécessité de régulariser	
	• Utiliser un algorithme pour optimis	er un critère d'estimation	
	Régulariser le critère d'un problème inverse par l'information a priori		
Contenus	1/ Introduction		
abordés :	Modèle direct/inverse		
	Séparation de sources, Tomographie, Déconvolution		
	Caractérisation ou cartographie?		
	2/ Problèmes mal posés		
	Conditionnement		
	Propagation d'erreur		
	3/ Régularisation		
	Compromis Biais/Variance		
	Quadratique		
	Parcimonieuse		
Modalités	Cours interactif et illustré et travaux p	pratiques	
d'enseignement :			
Bibliographie:	Idier Jérôme. 2001. Approche bayésie	nne pour les problèmes inverses. Hermes Science	
	Publications. IC2 Signal et Image. Lav	oisier.	

Préparation à l'insertion professionnelle

UE: PREPARATION A L'INSERTION PROFESSIONNELLE I (4 ECTS)

Fondement des organisations

UE de rattachement : Préparation à l'insertion professionnelle I (4ECTS)			
Nombre d'heures :	16h		
Année/semestre: M1/S1 Langue d'enseignement: mixte français / anglais		Langue d'enseignement : mixte français / anglais	
Enseignant	Mathias Guérineau		
référent :			
Objectifs:	Décrire une organisation		
	Repérer un problème organisationn	el	
	Porter un regard réflexif et critique sur le monde des organisations		
Contenus	Introduction aux enjeux managériaux et économiques des organisations permettant de		
abordés:	comprendre et définir ce qu'est un problème organisationnel. Les étudiantes et étudiants		
	développeront des bases théoriques et pratiques permettant de comprendre la variété des		
	organisations, mais aussi les grands principes qui les constituent. Nous aborderons aussi les		
	grands enjeux de l'organisation contemporaine en lien avec plusieurs dimensions		
	organisationnelles : culture, pouvoir, modes de prises de décisions, places et rôles des		
	incitations et des instruments de gestion, stratégie. Des exemples, lectures d'articles		
	(presse, recherche, magazines spécialisés) et études de cas (papier, film, série) permettront		
	d'aborder ces différents thèmes.		
Modalités	Théorie des Organisations (A. Desreumaux), Editions EMS: 2015 (3eme ed)		
d'enseignement :	Organization Theory: Challenges and p	perspectives. Mc Aulay et al. (2007) Pearson	
_	Mintzberg on management : inside our	strange world of organizations (H. Mintzberg), [Le	
		ganisations, Free Press [Eyrolles Ed. d'Organisation]	

Projet expérimental 1

UE de rattachemei	nt : Préparation à l'insertion profession	nelle I (4ECTS)
Nombre d'heures :	20 h	
Année/semestre : I	Année/semestre : M1S1 Langue d'enseignement : français	
Enseignant référent :	Jean-Luc Duvail, Philippe Poizot	
Objectifs :	 Connaitre la démarche et quelques outils appropriés pour effectuer une recherche bibliographique dans le domaine de la physique et la chimie Connaitre les grands principes de l'intégrité scientifique et la notion de plagiat S'approprier les attendus d'un rapport scientifique et d'un support de présentation orale 	
Contenus abordés :	S'approprier les attendus d'un rapport scientifique et d'un support de présentation orale Recherche et gestion de l'information scientifique et technologique Du cahier de laboratoire aux publications, au dépôt de brevet Formation à l'interrogation et au bon usage des bases de données spécialisées (Scifinder, ScienceDirect, GoogleScholar,) Usage d'un outil de gestion de l'IST (Zotero) 2. Communication scientifique Grands principes de l'intégrité scientifique et notion de plagiat; découverte du logiciel Compilatio Règles et principes pour la mise en forme d'un document scientifique Conception et présentation orale d'une communication scientifique	
Modalités	Combinaison de cours magistral, trava	ail préparatoire personnel, mise en pratique en classe
d'enseignement :	(sur rapports de stage de L3) et sur ordinateur.	

	Evaluation : Rapport bibliographique en anglais
Bibliographie:	Intégrité scientifique – Charte anti-plagiat de Nantes Université : https://www.univ-
	nantes.fr/recherche-et-innovation/laboratoires/lintegrite-scientifique-un-engagement-de-
	luniversite-de-nantes

Ecole thématique

UE de rattachement : Préparation à l'insertion professionnelle I (4ECTS)			
Nombre d'heures : sans objet			
Année/semestre : M1/S1 Langue d'enseignement : français		Langue d'enseignement : français	
Enseignant	Jean-Luc Duvail, Philippe Poizot, Xavier Py		
référent :			
Objectifs:	Gérer l'organisation de la ou les journées concernées par l'évènement.		
	Développer des compétences de savoir-être au contact de professionnels du laboratoire		
	Développer sa capacité à travailler en autonomie		
Contenus	Thématiques variables		
abordés :			
Modalités	Projet évènementiel		
d'enseignement :			

UE : PREPARATION A L'INSERTION PROFESSIONNELLE II (6 ECTS)

Risques chimiques

UE de rattachement : Préparation à l'insertion professionnelle II (6 ECTS)			
Nombre d'heures : 4h			
Année/semestre :	Année/semestre: M1/S2 Langue d'enseignement: français		
Enseignant référent :	Virginie Blot		
Objectifs:	 Identifier les risques santé & sécurité auxquels il sera confronté dans sa vie professionnel, Identifier les moyens de prévention des risques auxquels il/elle sera confronté e dans sa vie professionnelle. 		
Contenus abordés :	Cette intervention sensibilise les étudiantes et étudiants à la gestion des risques en santé et sécurité en laboratoire de chimie ou plus généralement au sein de leur future activité professionnelle. Elle devrait également les aider à valider le module d'auto-formation NEO du CNRS, obligatoire pour tous les nouveaux entrants dans un laboratoire de recherche du CNRS.		
Modalités d'enseignement :	Le distanciel proposera aux étudiantes et étudiants de suivre la e-formation de l'INRS concernant les risques chimiques " Acquérir les notions de base sur les produits chimiques". Le présentiel introduira la prévention des risques auxquels seront confrontés les étudiantes et étudiants dans leur future vie professionnelle.		

Initiation au management de projet

UE de rattachemei	nt : Préparation à l'insertion professionr	nelle II (6 ECTS)
Nombre d'heures :		
Année/semestre : M1/S2		Langue d'enseignement : mixte français / anglais
Enseignant référent :	Mathias Guérineau	
Objectifs:	 Décrire une organisation Repérer un problème organisationnel Porter un regard réflexif et critique sur le monde des organisations Décrire un projet Organiser un projet Définir et mettre en œuvre des pratiques de management 	
Contenus abordés :	Les étudiants auront deux éléments introductifs, l'un centré sur la théorie des organisations et l'autre le management de projet : 1 orga Introduction aux enjeux managériaux et économiques des organisations permettant de comprendre et définir ce qu'est un problème organisationnel. Bases théoriques et pratiques permettant de comprendre la variété des organisations, mais aussi les grands principes qui les constituent. Grands enjeux de l'organisation contemporaine en lien avec plusieurs dimensions organisationnelles : culture, pouvoir, modes de prises de décisions, places et rôles des incitations et des instruments de gestion, stratégie. 12 projet Initiation au management de projet : définitions du management de projet, présentation des spécificités de l'activité projet au sein des organisations, principes fondamentaux du management de projet : définir les objectifs, planifier les tâches, communiquer en interne et	
Modalités d'enseignement :	en externe, etc. Présentielle (CM) : lecture d'articles, étu	ides de cas, etc), projet de groupe
Bibliographie:	Théorie des Organisations (A. Desreumaux), Editions EMS: 2015 (3eme ed) Organization Theory: Challenges and perspectives. Mc Aulay et al. (2007) Pearson Mintzberg on managment: inside our strange world of organizations (H. Mintzberg), [Le management; Voyage au centre des organisations, Free Press [Eyrolles Ed. d'Organisation] 1989 [1998] Management de projet, Garel, G. (2011) La découverte collection Repères, Antimanuel de management de projet: composer avec les incertitudes, Thomas Reverdy, 2021, Dunod Pratiques de management de projet; 46 outils et techniques pour prendre la bonne décision, Vincent Drecq, 2020, Dunod	

Projet expérimental 2

UE de rattachement : Préparation à l'insertion professionnelle II (6 ECTS)		
Nombre d'heures : sans objet		
Année/semestre : M1S1 Langue d'enseignement : Français		Langue d'enseignement : Français
Enseignant référent :	Jean-Luc Duvail, Philippe Poizot	
Objectifs:	 Intégrer une activité de recherche ou de R&D Gérer un projet en respectant un calendrier et des échéances intermédiaires. Développer des compétences de savoir-être au contact des professionnels du laboratoire Mettre en pratique les notions abordées dans l'EC Projet expérimental 1 Mettre en œuvre des expériences adaptées pour répondre à un questionnement 	

	Utiliser des équipements de laboratoire après une période de formation			
	Développer sa capacité à travailler en autonomie			
Contenus	En monôme ou binôme, de janvier à mars, chaque étudiant·e intègre un projet de recherche			
abordés :	sous la supervision d'un chercheur/enseignant-chercheur. Il/Elle découvre un domaine de			
	recherche ou R&D, mobilise les notions vues dans son cursus universitaire, en particulier au			
	niveau M1, appréhende des techniques et équipements de recherche pour élaborer un			
	(nano, micro)matériau et le caractériser.			
	Il/Elle doit consigner l'ensemble de ses études (cahier de laboratoire) pour établir un			
	compte-rendu hebdomadaire qu'il soumet à son responsable. Il/Elle propose une analyse			
	des résultats obtenus, en s'appuyant le cas échéant sur des articles ou rapports antérieurs.			
	Il/Elle doit établir un rétroplanning et un plan détaillé du support de présentation orale qu			
	soumet à son superviseur dans le respect du cahier des charges et des livrables. Cette			
	présentation doit comporter une partie sur le contexte de la thématique et de l'activité de			
	l'équipe, puis une synthèse avec analyse des résultats obtenus.			
	La soutenance orale est effectuée en anglais.			
Modalités	Enseignement par projet – immersion dans un laboratoire de recherche – intégration d'un			
d'enseignement :	projet de recherche expérimental			
Bibliographie:	Intégrité scientifique – Charte anti-plagiat de Nantes Université : https://www.univ-			
	nantes.fr/recherche-et-innovation/laboratoires/lintegrite-scientifique-un-engagement-de-			
	luniversite-de-nantes			

UE: STAGE (9 ECTS)

Le stage joue un rôle important dans le programme du master E-Mat et est basé sur une interaction étroite entre la recherche et l'innovation technologique. Les étudiantes et étudiants passeront entre 2 et 4 mois à travailler dans une équipe de recherche nationale ou internationale ou dans l'industrie.

Durée : à partir de	urée : à partir de 8 semaines Nombre d'ECTS :		9
Année/semestre: M1 / S2			Langue d'enseignement : français/anglais
Enseignants référents :	Patricia Bertoncini et Philippe Moreau		
Objectifs:	 Mettre en œuvre d'une démarche scientifique dans un travail personnel de recherche fondamentale ou appliquée S'intégrer dans une équipe de travail en milieu professionnel Réaliser, pour les stages à l'étranger, une véritable immersion culturelle et linguistique. 		
Contenus abordés :	Thématiques de recherche dans les domaines des matériaux fonctionnels, des procédés associés et de l'énergétique		

Mobilité des étudiantes et étudiants inscrits au Master E-Mat pendant le stage :

Ce programme favorise la mobilité internationale des étudiantes et étudiants en mettant à leur disposition le réseau international des deux laboratoires partenaires.

Les étudiantes et étudiants bénéficient d'une bourse de mobilité de 500 à 700 € par mois, selon le pays de destination. Ils peuvent également bénéficier d'une bourse de déménagement de 1 000 €.

Accueil d'étudiantes et étudiants en stage dans nos laboratoires partenaires :

Les étudiantes et étudiants souhaitant effectuer un stage dans l'un de nos laboratoires partenaires doivent envoyer leur candidature, accompagnée de leur CV et d'un résumé de leurs centres d'intérêt, aux coordinateurs du programme. Si la candidature est jugée recevable, un entretien leur sera proposé pour expliquer leurs objectifs.

Nantes Université