Contribution à une gestion durable de structures en béton armé soumises à la pénétration des ions chlorure

Thèse de doctorat présentée et soutenue publiquement par

Emilio BASTIDAS-ARTEAGA

devant le jury ci-dessous :

Rapporteurs :
M. Frédéric DUPRAT, INSA de Toulouse
M. Michael H. FABER, ETH Zurich

Examinateurs :
M. Denys BREYSSE, Université de Bordeaux
M. Philippe BRESOLETTE, Université Blaise Pascal
M. Alaa CHATEAUNEUF, Université Blaise Pascal
M. Franck SCHOEFS, Université de Nantes

Invites :
M. Bruno CAPRA, Société OXAND
M. Alan O'CONNOR, Trinity College Dublin

Nantes, le 1 septembre 2010
Reliability of RC structures in chloride-contaminated environments

Problems with maintenance of corroding RC structures:

- There are no reliable models →
 - to assess the performance during the operational life and
 - to establish optimal management strategies

- Currently → corrective repair is carried out when visible signs of deterioration appear
 - the expenditures cannot be predicted during the life-cycle and
 - structural safety can be seriously compromised when repair is not undertaken
Questions of the owners/operators:

- How much chloride ingress will affect structural integrity?
- How and when inspection and repair should be undertaken?
- How to determine a sustainable maintenance strategy?

Objectives:

1. To define the approach more appropriate to deal with this problem based on a literature review
2. To choose and to implement a comprehensive model of chloride penetration
3. To introduce the deterioration model into an appropriate probabilistic framework to account for the uncertainties related to the deterioration phenomenon
4. To formulate a methodology for optimizing the performance of maintenance strategies
5. To include environmental constraints in the decision-making process to evaluate the sustainability of maintenance strategies
1. RC deterioration and maintenance
2. Probabilistic modeling of chloride ingress
3. Optimal management of corroding RC structures
4. Sustainability of maintenance strategies
5. Closure
Life-cycle of corroding RC structures

Stages of the life-cycle

1. Corrosion immunity
2. Active corrosion
3. Corrosion after severe concrete cracking
Deterioration and maintenance modeling

Approaches for modeling deterioration and maintenance actions [van Noortwijk and Frangopol, 2004]:
1. Failure rate function
2. Markov model
3. Stochastic process
4. Time-dependent reliability index

Failure rate function
- indicates the frequency with which a structure/component fails and is computed in terms of the lifetime distribution
 - useful in problems where the states “functioning” and “failed” are well-defined
 - difficulties in defining failure for civil engineering problems ➔ loss of serviceability, local failure (ULS) or total collapse
 - structures or structural components can be in different states

Markov model
- structural conditions are discretized in various states
 - widely used in management of civil engineering systems (e.g., PONTIS, KUBA-MS)
 - effects deterioration, inspection and maintenance can be easily modeled
 - based on visual inspection or expert judgment
 - reliability is not directly incorporated
Deterioration and maintenance modeling

Stochastic process (gamma process)
- Deterioration at time $t \rightarrow$ power law –i.e., $a t^b$ for $a, b > 0$
- COV \rightarrow constant
 - simplified tool for optimizing the maintenance of critical components or prioritizing maintenance of structural networks when the mathematical properties of the stochastic process are well-known
 - it only focuses on one component, one failure mode and one uncertainty (COV of the deterioration process)

Time-dependent reliability index
- Purpose \rightarrow to minimize costs by ensuring an optimal level of safety
 - incorporation of the uncertainties related to material properties, environmental actions, load, inspection, repair, etc.
 - consideration of various limit states (i.e., ultimate or serviceability) and failure modes
 - the effects of maintenance are difficult to estimate
 - time consuming

Selected approach \rightarrow Markov model
Definition of failure
- How to define failure? (collapse, loss of serviceability, loss of capacity, ...)
- After discussion with the stakeholders (MAREO project)
 - failure \rightarrow corrosion initiation

Repair criterion
- The structure is repaired before corrosion initiation
- Motivation/advantages
 - Inspection and repair actions \rightarrow based on a measurable parameter
 - The decay of structural safety is minimized \rightarrow repair is carried out before corrosion initiation
 - Practical point of view \rightarrow the replacement of reinforcing bars is few
Maintenance strategy

- **Stages of the maintenance strategy**
 1. **Periodic inspection**: chloride profiles → concrete cores

2. **Repair**:
 - Demolition of the polluted concrete → Hydrodemolition
 - Cover rebuilding → several construction techniques
General description of the proposed approach

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Det. & maint.</th>
<th>Deterioration model</th>
<th>Optimal management</th>
<th>Sustainable management</th>
<th>Closure</th>
</tr>
</thead>
</table>

- **Formulation of the strategy**
 - Probabilistic model of deterioration
 - Markov chains
 - Decision theory

- **Modeling deterioration and maintenance actions**
 - Multi-criteria optimization (compromise programming)

- **To minimize cost and environmental impact**
 - Sustainable maintenance strategy

- **Sustainable maintenance strategy**
1. RC deterioration and maintenance
2. Probabilistic modeling of chloride ingress
3. Optimal management of corroding RC structures
4. Sustainability of maintenance strategies
5. Closure
The adopted model of chloride ingress takes into account the interaction between three phenomena [Saetta et al., 1993]:

- **Chloride penetration**
 \[
 \frac{\partial C_{fc}}{\partial t} = \text{div} \left(D^*_c \nabla (C_{fc}) \right) + \text{div} \left(D^*_h C_{fc} \nabla (h) \right)
 \]
 with
 \[
 D^*_c = \frac{D_{c,\text{ref}} f_1(T) f_2(t) f_3(h)}{1 + (1/w_\varepsilon)(\partial C_{bc}/\partial C_{fc})}
 \]

- **Humidity diffusion**
 \[
 \frac{\partial w_\varepsilon}{\partial t} = \frac{\partial w_\varepsilon}{\partial h} \frac{\partial h}{\partial t} = \text{div} \left(D_h \nabla (h) \right)
 \]

- **Heat transfer**
 \[
 \rho c_c c_q \frac{\partial T}{\partial t} = \text{div} \left(\lambda \nabla (T) \right)
 \]
Modeling chloride penetration

Numerical approach
- Spatial solution \rightarrow finite element method
- Integration in time \rightarrow Crank-Nicolson finite difference method
- Modeling \rightarrow Fortran

Advantages with respect to the simplified Fick’s model:
- Input variables C_{env}, h_{env} and T_{env} \rightarrow time-dependent or stochastic
- Chloride binding
- Chloride flow in two-dimensions and in unsaturated conditions
Probabilistic framework for reliability analysis

Probabilistic approach:

- material properties
- model and its parameters
- environmental actions (temperature, humidity, chloride concentration)

Input:

- Randomness
 - Random variables
- Stochastic processes

Probabilistic chloride ingress model

Output:

Probability of corrosion initiation
Instantaneous probability of corrosion initiation:

\[p_{corr}(t) = P[g(X, t) \leq 0] = \int_{g(X, t) \leq 0} f_X(x) dx_1 \ldots dx_n \]

Structural condition to define the limit state function:

- Serviceability limit state \(\rightarrow \) probability of corrosion initiation

\[g(X, t) = C_{th}(X) - C_{ct}(X, t) \]

Reliability method:

- Monte Carlo simulation and Latin Hypercube sampling
Time-invariant random variables

Random variables related to chloride penetration
- Ordinary Portland concrete
- w/c = 0.5
- unsaturated conditions

<table>
<thead>
<tr>
<th>Physical problem</th>
<th>Variable</th>
<th>Unit</th>
<th>Distribution</th>
<th>Mean</th>
<th>COV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride ingress</td>
<td>$D_{c,ref}$</td>
<td>m²/s</td>
<td>log-normal</td>
<td>3·10⁻¹¹</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>U_c</td>
<td>kJ/mol</td>
<td>beta [32;44.6]</td>
<td>41.8</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>m_c</td>
<td></td>
<td>beta [0;1]</td>
<td>0.15</td>
<td>0.30</td>
</tr>
<tr>
<td>Humidity diffusion</td>
<td>$D_{h,ref}$</td>
<td>m²/s</td>
<td>log-normal</td>
<td>3·10⁻¹⁰</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>α_0</td>
<td></td>
<td>beta [0.025;0.1]</td>
<td>0.05</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td></td>
<td>beta [6;16]</td>
<td>11</td>
<td>0.10</td>
</tr>
<tr>
<td>Heat transfer</td>
<td>λ</td>
<td>W/(m°C)</td>
<td>beta [1.4;3.6]</td>
<td>2.5</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>c_q</td>
<td>J/(kg°C)</td>
<td>beta [840;1170]</td>
<td>1000</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>ρ_c</td>
<td>kg/m³</td>
<td>normal</td>
<td>2400</td>
<td>0.20</td>
</tr>
<tr>
<td>Corrosion initiation</td>
<td>C_{th}</td>
<td>wt% cem.</td>
<td>normal</td>
<td>0.48</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>c_t</td>
<td></td>
<td>normal truncated</td>
<td>nominal</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Stochastic processes

Stochastic model of weather (humidity and temperature):
- Karhunen-Loève expansion
 - Seasonal trend
 - Global warming

Stochastic model of environmental chloride concentration:
- Uncorrelated log-normal fluctuations

Exposure to sea

Exposure to de-icing salts
Example: influence of global warming on corrosion initiation time

Objective:
To study the influence of real weather conditions on both the probability of corrosion initiation and the lifetime reduction.

Description of the example:

![Diagram of corrosion initiation time](image)

Studied environments:

<table>
<thead>
<tr>
<th>Climate</th>
<th>Temp. (°C)</th>
<th>RH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continental:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>middle latitudes far from the sea</td>
<td>-10 to 20</td>
<td>0.6 to 0.8</td>
</tr>
<tr>
<td>Oceanic:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>middle latitudes close from the sea</td>
<td>5 to 25</td>
<td>0.6 to 0.8</td>
</tr>
<tr>
<td>Tropical:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>equatorial latitudes close to the sea</td>
<td>20 to 30</td>
<td>0.7 to 0.9</td>
</tr>
</tbody>
</table>

Basic assumptions:
- Structure placed in an unsaturated environment
- Concrete made with 400 kg/m³ of OPC with 8% of C₃A and w/c = 0.5
- Isotherm of Langmuir: $\alpha_L = 0.1185$ and $\theta_L = 0.09$
Parameters to simulate global warming:

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Characteristics</th>
<th>Δt_a 1</th>
<th>Δh_a 2,3,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without</td>
<td>climate change is neglected</td>
<td>0 ºC</td>
<td>0</td>
</tr>
<tr>
<td>Expected</td>
<td>use of alternative and fossil sources of energy, birthrates follow the current patterns and there is no an extensive employ of clean technologies</td>
<td>2.5 ºC</td>
<td>0.05</td>
</tr>
<tr>
<td>Pessimistic</td>
<td>vast utilization of fossil sources of energy, appreciable growth of population and there are no policies to develop and to share the use of clean technologies</td>
<td>6.5 ºC</td>
<td>0.10</td>
</tr>
</tbody>
</table>

References

1. IPCC. Climate change 2007: The physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Technical report, Intergovernmental Panel on Climate Change; 2007.
Example: influence of global warming on corrosion initiation time

Effect of type of exposure

- highest p_{corr} → marine environments
- model → the interaction between chloride penetration and weather
Example: influence of global warming on corrosion initiation time

Lifetime reduction induced by global warming

- Lifetime reductions take as reference the case without global warming:
 - 2 to 12% → expected scenario
 - 4 to 18% → pessimistic scenario
- Results → implementation of countermeasures
1. RC deterioration and maintenance
2. Probabilistic modeling of chloride ingress
3. **Optimal management of corroding RC structures**
4. Sustainability of maintenance strategies
5. Closure
General description of the proposed approach

Formulation of the strategy

Modeling deterioration and maintenance actions
- Probabilistic model of deterioration
- Markov chains
- Decision theory

To minimize cost and environmental impact

Sustainable and optimal maintenance strategy
Modeling deterioration, inspection and maintenance actions

- **Markov process**

- **Chapman-Kolmogorov** → to predict a future state by knowing the present state:

\[
q(t) = q_{\text{init}} P^t
\]

Deterioration, inspection and maintenance

- **Variable of interest** → chloride concentration at the cover depth

- **Modeling** → Matlab [Sheils et al., 2010]
Modeling deterioration, inspection and maintenance actions

[Sheils et al., 2010]

Inspection interval, Δt

Year between inspections

\[
p^{be} = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} & \ldots & a_{1n} \\
 a_{21} & a_{22} & a_{23} & \ldots & a_{2n} \\
 a_{31} & 0 & a_{33} & \ldots & a_{3n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & 0 & 0 & \ldots & a_{nn}
\end{bmatrix}
\]

Assessment of p^{be}
- growth matrix p^{gr}
- Failure probability (corrosion initiation)

Inspection year

\[
p^{in} = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} & \ldots & a_{1n} \\
 a_{21} & a_{22} & a_{23} & \ldots & a_{2n} \\
 a_{31} & 0 & a_{33} & \ldots & a_{3n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & 0 & 0 & \ldots & a_{nn}
\end{bmatrix}
\]

Assessment of p^{in}
- growth matrix p^{gr}
- Failure probability (corrosion initiation)
- inspection results \rightarrow PGA and PWA
Estimation of the growth matrix

- Discretization of the chloride concentration at the cover depth

<table>
<thead>
<tr>
<th>State j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum (kg/m3)</td>
<td>0.0</td>
<td>0.4</td>
<td>0.8</td>
<td>1.2</td>
<td>1.6</td>
<td>2.0</td>
<td>2.4</td>
<td>2.8</td>
<td>3.2</td>
<td>3.6</td>
</tr>
<tr>
<td>Maximum (kg/m3)</td>
<td>0.4</td>
<td>0.8</td>
<td>1.2</td>
<td>1.6</td>
<td>2.0</td>
<td>2.4</td>
<td>2.8</td>
<td>3.2</td>
<td>3.6</td>
<td>4.0</td>
</tr>
</tbody>
</table>

- Simulations \rightarrow histogram of the chloride concentration at the cover depth and at a given time

$$\hat{q}_j(t) = \frac{n_j(t)}{N}$$

where $n_j(t)$ is the number of observations in the state j measured at time t and N is the total number of simulations.

- Transition probabilities $a \rightarrow$ multi-objective optimization

$$\min_{a} \max_{F} F(a) = (f_1(a), f_2(a), \ldots, f_M(a))^T$$

subject to $a_{ij} \geq 0$ and $\sum_{j=0}^{\infty} a_{ij} = 1$

where $f_j(a) = \sum_{t=0}^{t_{ana}} (\hat{q}_j(t) - q_j(t, a))^2$
Estimation of the growth matrix

Results of the optimization: discrete probabilities with time
Inspection results – imperfect measurement

PGA and PWA
- Probability of good assessment (PGA)
 \[\text{PGA} = P(\hat{C}(\mathbf{X}) \geq C_{\text{rep}} | C(\mathbf{X}) \geq C_{\text{rep}}) \]
- Probability of wrong assessment (PWA)
 \[\text{PWA} = P(\hat{C}(\mathbf{X}) \geq C_{\text{rep}} | C(\mathbf{X}) < C_{\text{rep}}) \]

Assessment of PGA and PWA
- characterization of the noise → experimental tests [Bonnet et al., 2009]
 - Generalized extreme value distribution \(K_\eta = 0.016, \sigma_\eta = 9.3 \cdot 10^{-5} \) and \(\mu_\eta = -8.4 \cdot 10^{-5} \) in kg/kg of concrete
- characterization of the signal → simulations
 - Log-normal distribution
- probability of good assessment → FORM
- probability of wrong assessment:

\[
PWA = 1 - \exp\left(- \left[1 + K_\eta \left(\frac{C_{\text{rep}} - \mu_\eta}{\sigma_\eta} \right) \right]^{-1/K_\eta} \right)
\]
Cost analysis

- **Markov model** → stabilized number of defects in each state [Sheils et al., 2010]

- **Expected total cost**

 \[E[C_T] = E[C_I] + E[C_R] + E[C_F] \]

 - **Total**
 - **Inspection**
 - **Repair**
 - **Failure**

 - Only agency (direct) costs
 - Expected costs computed on an annual basis → annual expenditures of the agency

- **Inspection cost**

 \[E[C_I] = E[n_I] C_0 k_I \]

 where \(n_I \) is the annual number of inspections and

 \(k_I \) is a coefficient to estimate the inspection cost as function of the initial cost of construction, \(C_0 \)
Cost analysis

- **Repair cost**

\[
E[C_R] = C_0 k_R \sum_{i=1}^{M} E[n_R(i)]
\]

where \(n_R\) is the annual number of repairs and

\(k_R\) is a coefficient to estimate the repair cost as function of \(C_0\)

- **Failure cost**

\[
\begin{align*}
E[C_F] &= E[C_{F1}] + E[C_{F2}] \\
E[C_{F1}] &= C_0 k_F \sum_{i=1}^{M} E[n_{F1}(i)] \quad \text{between inspections} \\
E[C_{F2}] &= C_0 k_F \sum_{i=1}^{M} E[n_{F2}(i)] \quad \text{at inspection years}
\end{align*}
\]

where \(n_{F1}\) and \(n_{F2}\) are the annual number of failures between inspections and at inspection years, respectively; and

\(k_F\) is a coefficient to estimate the failure cost as function of \(C_0\)
Objective:
To illustrate the proposed methodology studying the influence of the inspection interval on expected costs

Description of the example:
- 100 structural components placed in an unsaturated environment
- Temperature \to 5 to 25°C
- Relative humidity \to 0.6 to 0.8
- $\mu C_{env} = 6$ kg/m3 and COV=0.2
- Discretization into $M = 10$ states

Cost models \to average expenditures Port of Nantes – S.-Nazaire
MAREO project

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial cost, C_0</td>
<td>1000</td>
</tr>
<tr>
<td>Inspection coefficient, k_i</td>
<td>0.005</td>
</tr>
<tr>
<td>Repair coefficient, k_R</td>
<td>0.15</td>
</tr>
<tr>
<td>Failure coefficient, k_F</td>
<td>0.30</td>
</tr>
</tbody>
</table>
Effect of the inspection interval on expected annual costs

- \(E[C_I] \) and \(E[C_R] \) decrease when \(\Delta t \) increases.
- \(E[C_F] \) increases when \(\Delta t \) increases.
- Optimal total inspection interval \(\rightarrow 7 \) years.
Illustrative example

Influence of the repair threshold C_{rep} on the total cost

- $E[C_r]$ sensitive to the repair threshold
- For repair thresholds $< 1.6 \text{ kg/m}^3$, there is Δt_{opt} that minimizes cost
- The repair threshold \rightarrow defined for a particular problem
Influence of the repair threshold C_{rep} on the expected annual cost

- **Inspection**
- **Repair**
- **Failure**
- **Total**

- $E[C_i]$, $E[C_r] \uparrow$ and $E[C_f] \downarrow$ when the repair threshold \uparrow
- Optimal repair threshold $\rightarrow 1.2 \text{ kg/m}^3$
Outline

1. RC deterioration and maintenance
2. Probabilistic modeling of chloride ingress
3. Optimal management of corroding RC structures
4. Sustainability of maintenance strategies
5. Closure
General description of the proposed approach

Formulation of the strategy

Modeling deterioration and maintenance actions
- Probabilistic model of deterioration
- Markov chains
- Decision theory

To minimize cost and environmental impact
- Multi-criteria optimization (compromise programming)

Sustainable maintenance strategy
Sustainable development [World commission on environment and development, 1987]:

... development that meets the needs of the present without compromising the ability of future generations to meet their own needs...

Components of sustainability → environment, economy, and society

The evaluation of the sustainability of maintenance strategies is based on the comparison of three criteria:

1. costs,
2. waste generation, and
3. CO₂ emissions
Criteria to assess the sustainability of maintenance strategies

- **Costs**
 - Assessment → model of inspection/maintenance
 - Direct costs → inspection, repair and failure
 - Real data → port of Nantes – St.-Nazaire and MAREO project

- **Waste generation**
 - Concrete → 67% of waste of construction and demolition [American Institute of Architects, 1999]
 - 5% recycled
 - Assessment → waste produced during demolition and repair
 - Data → repair on real beams (MAREO project)

- **CO₂ emissions**
 - Production of cement → 7% of total emissions of CO₂ [Kumar Mehta, 1997]
 - Sources:
 - production and transport of repair products
 - transport of equipment
 - transport of waste
 - Data → repair on real beams (MAREO project) and literature
Decision-making under multiple constraints

- Multi-criteria comparison:

- Ideal solution:

\[\mathbf{f}^* = [x_1^*, x_2^*, \ldots, x_m^*] \]

- Multi-objective index:

\[
\text{MOI}(x) = \left[\sum_{i=1}^{m} w_i^p \left(\frac{x_i - x_i^*}{x_i^* - x_i^*} \right)^p \right]^{1/p}
\]

where \(w_i \) is the weighting factor for the optimization criterion

\(p \) indicates the importance given to deviations from the ideal solution.
The Agri-foodstuffs terminal (Port of Nantes - St.-Nazaire):

- built in 1971
- Repair area \rightarrow 1400 m2

Objective:
To find a sustainable repair strategy
Basic repair technique → rebuilding the concrete cover by using three techniques

1. Wet shotcrete
2. Dry shotcrete
3. Formed concrete

Beams after 80 years of exposure (Lorient, France)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Wet shotcrete</th>
<th>Dry shotcrete</th>
<th>Formed concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product cost (€/kg)</td>
<td>0.68</td>
<td>0.28</td>
<td>0.14</td>
</tr>
<tr>
<td>Staff (people)</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Waste generation</td>
<td>< 5%</td>
<td>> 30%</td>
<td>< 5%</td>
</tr>
<tr>
<td>Finished</td>
<td>Satisfactory</td>
<td>Rough</td>
<td>Very satisfactory</td>
</tr>
</tbody>
</table>
Results

Optimization of the sustainability of a given maintenance strategy

![Graph showing the optimization of sustainability with cost, CO₂, and waste weights. The graph illustrates the trade-offs between the expected cost and the MOI (Measure of Improvement) as a function of the inspection interval.](image)

- $w_{\text{cost}} = 0.6$
- $w_{\text{CO}_2} = 0.05$
- $w_{\text{waste}} = 0.05$
Results

Optimization of the sustainability of a given maintenance strategy

For a lifetime of 50 years and a repair surface of 1000 m2, a sustainable maintenance strategy will reduce the waste generation in 84 m3 and the emissions in 28 tons of CO$_2$.
Results

Sustainable decision-making

<table>
<thead>
<tr>
<th>Technique</th>
<th>Cost</th>
<th>Waste (10^3 m³/yr)</th>
<th>Emissions (kg CO₂/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet shotcrete</td>
<td>468</td>
<td>14.6</td>
<td>6.8</td>
</tr>
<tr>
<td>Dry shotcrete</td>
<td>362</td>
<td>16.4</td>
<td>7.8</td>
</tr>
<tr>
<td>Formed concrete</td>
<td>626</td>
<td>32.7</td>
<td>15.3</td>
</tr>
</tbody>
</table>
Results

Sustainable decision-making

![Graph showing Multi-Objective Index (MOI) for different repair techniques and scenarios.]

- **Scenarios**: 2, 3, 4
- **Repair Techniques**: wet shotcrete, dry shotcrete, formed concrete
- **MOI Values**:
 - **Scenario 2**: 0.3, 0.1, 0.8
 - **Scenario 3**: 0.2, 0.05, 0.6
 - **Scenario 4**: 0.2, 0.05, 0.6

The graph illustrates the comparison of sustainable decision-making strategies across different repair techniques and scenarios, showing the impact on the Multi-Objective Index (MOI).
1. RC deterioration and maintenance
2. Probabilistic modeling of chloride ingress
3. Optimal management of corroding RC structures
4. Sustainability of maintenance strategies
5. Closure
Summary and conclusions

- **Probabilistic modeling of chloride penetration**
 - Chloride penetration in unsaturated conditions and in two-dimensions
 - Chloride binding capacity
 - Time-dependence of T, h and C_{env}
 - Aging

- **Markovian approach for modeling deterioration and maintenance actions**
 - Preventive repair \rightarrow reduce the reliability decay
 - Inspection \rightarrow experimental measurements
 - Decision theory \rightarrow effect of imperfect inspections

- **Optimization of management of RC structures subjected to chloride penetration \rightarrow (1) to minimize costs and (2) to ensure a level of safety**
 - Requirements:
 - To optimize the repair threshold C_{rep}
 - To determine an appropriate model of C_{th}
 - To improve the quality of the inspection technique
Summary and conclusions

- **Sustainability of maintenance strategies** → to minimize costs and environmental impact
 - Definition of criteria for sustainability analysis
 - Multi-objective optimization → sustainable maintenance strategy
 - Proposed methodology → to optimize the performance of a maintenance technique or as a tool for decision-making
Perspectives

Improvements of the model → addition of other physical phenomena, improvement of the probabilistic model and use of other inspection techniques or repair criteria

- **Chloride penetration model**
 - determination of model parameters for a wide range of concrete types and cement-based repair materials
 - formulation and implementation of a model that considers the kinematics between concrete cracking and chloride penetration
 - study of the influence of hourly, daily and weekly variations of temperature and humidity on chloride ingress

- **Probabilistic model**
 - consideration of the spatial variability of the phenomenon and the correlations between the material properties
 - characterization and modeling of error propagation in the whole deterioration process
 - consideration of the uncertainty inherent to waste generation and CO₂ emissions in the assessment of environmental impact
Perspectives

- **Inspection/repair model**
 - Updating of transition probabilities from inspection data (Bayesian approach [Corotis et al., 2005]) and modeling of inspection based on NDT-tools

- Combination of preventive (SLS) and corrective (ULS) repair strategies during the structural lifetime to find an optimal solution in a larger time-window

- Formulation and study of the effectiveness of a management strategy that considers time-variant inspection intervals

- Integration of user costs to the analysis and assessment of the optimal inspection intervals on the basis of values other than the expected costs (i.e., [Schoefs et al., 2009])

Thank you for your kind attention!